Cortical Computation via Iterative Constructions
نویسندگان
چکیده
We study Boolean functions of an arbitrary number of input variables that can be realized by simple iterative constructions based on constant-size primitives. This restricted type of construction needs little global coordination or control and thus is a candidate for neurally feasible computation. Valiant’s construction of a majority function can be realized in this manner and, as we show, can be generalized to any uniform threshold function. We study the rate of convergence, finding that while linear convergence to the correct function can be achieved for any threshold using a fixed set of primitives, for quadratic convergence, the size of the primitives must grow as the threshold approaches 0 or 1. We also study finite realizations of this process and the learnability of the functions realized. We show that the constructions realized are accurate outside a small interval near the target threshold, where the size of the construction grows as the inverse square of the interval width. This phenomenon, that errors are higher closer to thresholds (and thresholds closer to the boundary are harder to represent), is a well-known cognitive finding.
منابع مشابه
Constructions of antimagic labelings for some families of regular graphs
In this paper we construct antimagic labelings of the regular complete multipartite graphs and we also extend the construction to some families of regular graphs.
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملPath Planning for Indoor Mobile Robot using Half-Sweep SOR via Nine-Point Laplacian (HSSOR9L)
This paper proposed fast Half-Sweep SOR via Nine-Point Laplacian (HSSOR9L) iterative method for solving path planning problem for a mobile robot operating in indoor environment model. It is based on the use of Laplace’s Equation to constraint the distribution of potential values in the environment of the robot. Fast computation with half-sweep iteration is obtained by considering only half of w...
متن کاملA nested iterative scheme for computation of incompressible flows in long domains
We present an effective preconditioning technique for solving the nonsymmetric linear systems encountered in computation of incompressible flows in long domains. The application category we focus on is arterial fluid mechanics. These linear systems are solved using a nested iterative scheme with an outer Richardson scheme and an inner iteration that is handled via a Krylov subspace method. Test...
متن کاملIterative inversion of structured matrices
Iterative processes for the inversion of structured matrices can be further improved by using a technique for compression and refinement via the least-squares computation. We review such processes and elaborate upon incorporation of this technique into the known frameworks.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016